home *** CD-ROM | disk | FTP | other *** search
Wrap
(*^ ::[paletteColors = 128; currentKernel; fontset = title, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeTitle, center, M7, bold, L1, e8, 24, "Times"; ; fontset = subtitle, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeTitle, center, M7, bold, L1, e6, 18, "Times"; ; fontset = subsubtitle, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeTitle, center, M7, italic, L1, e6, 14, "Times"; ; fontset = section, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeSection, grayBox, M22, bold, L1, a20, 18, "Times"; ; fontset = subsection, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeSection, blackBox, M19, bold, L1, a15, 14, "Times"; ; fontset = subsubsection, inactive, noPageBreakBelow, nohscroll, preserveAspect, groupLikeSection, whiteBox, M18, bold, L1, a12, 12, "Times"; ; fontset = text, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 12; fontset = smalltext, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 10, "Times"; ; fontset = input, noPageBreakBelow, nowordwrap, preserveAspect, groupLikeInput, M42, N23, bold, L1, 12, "Courier"; ; fontset = output, output, inactive, noPageBreakBelow, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, L-5, 12, "Courier"; ; fontset = message, inactive, noPageBreakBelow, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, L1, 12, "Courier"; ; fontset = print, inactive, noPageBreakBelow, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, L1, 12, "Courier"; ; fontset = info, inactive, noPageBreakBelow, nowordwrap, preserveAspect, groupLikeOutput, M42, N23, L1, 12, "Courier"; ; fontset = postscript, PostScript, formatAsPostScript, output, inactive, noPageBreakBelow, nowordwrap, preserveAspect, groupLikeGraphics, M7, l34, w282, h287, L1, 12, "Courier"; ; fontset = name, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, italic, L1, 10, "Times"; ; fontset = header, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 12; fontset = Left Header, nohscroll, cellOutline, 12; fontset = footer, inactive, nohscroll, noKeepOnOnePage, preserveAspect, center, M7, L1, 12; fontset = Left Footer, cellOutline, blackBox, 12; fontset = help, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 10, "Times"; ; fontset = clipboard, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 12; fontset = completions, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 12, "Courier"; ; fontset = special1, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 12; fontset = special2, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 12; fontset = special3, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 12; fontset = special4, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 12; fontset = special5, inactive, nohscroll, noKeepOnOnePage, preserveAspect, M7, L1, 12; next21StandardFontEncoding; ] :[font = title; inactive; Cclosed; preserveAspect; startGroup; ] Lab 7: Integration :[font = text; inactive; preserveAspect; ] This lab shows how Mathematica evaluates multiple integrals in rectangular and spherical coordinates. It also shows how the SphericalPlot3D command can be used to graph surfaces in spherical coordinates. ;[s] 4:0,0;19,1;30,2;124,3;328,-1; 4:1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0; :[font = section; inactive; Cclosed; preserveAspect; startGroup; ] The Integrate Command :[font = text; inactive; preserveAspect; ] The Integrate command can be used to evaluate integrals of various types: indefinite integrals, definite integrals, improper integrals, non-elementary integrals, and iterated integrals. ;[s] 3:0,0;3,1;14,2;186,-1; 3:1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Examples :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] The simplest version of the Integrate command produces the indefinite integral (i.e. an antiderivative). For example: ;[s] 3:0,0;27,1;38,2;119,-1; 3:1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; preserveAspect; ] Integrate[ x^2, x ] :[font = text; inactive; preserveAspect; ] The output is a function of the variable listed second. :[font = text; inactive; preserveAspect; endGroup; ] The x listed second stands for the "dx" in the integral. ;[s] 5:0,0;3,1;6,2;36,3;38,4;57,-1; 5:1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] For the definite integral, the isolated x is replaced with a range for x, indicating the bounds on the integral. For example: ;[s] 5:0,0;39,1;42,2;71,3;72,4;126,-1; 5:1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; preserveAspect; ] Integrate[ Sin[x], {x,0,Pi} ] :[font = text; inactive; preserveAspect; endGroup; ] Here, the variable listed in the range (x in this example) is merely a dummy variable; the output does not depend upon it. ;[s] 3:0,0;40,1;42,2;122,-1; 3:1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = text; inactive; Cclosed; pageBreak; preserveAspect; startGroup; ] Improper integrals can be evaluated by Mathematica: ;[s] 3:0,0;39,1;50,2;52,-1; 3:1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; preserveAspect; endGroup; ] Integrate[ Exp[-x^2], {x,-Infinity,Infinity} ] :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Here is a non-elementary integral: :[font = input; preserveAspect; ] Integrate[ Sqrt[1-x^4], {x,0,1} ] :[font = text; inactive; preserveAspect; endGroup; ] As the output indicates, there is no (elementary) antiderivative of this function.. It involves the Gamma function, which is itself defined by an integral. :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] However, Mathematica can still give a numerical (approximate decimal) answer: ;[s] 3:0,0;9,1;20,2;78,-1; 3:1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; preserveAspect; ] Integrate[ Sqrt[1-x^4], {x,0,1} ] // N :[font = text; inactive; preserveAspect; ] This is done by a method based upon the Trapezoidal Rule. :[font = text; inactive; preserveAspect; ] The NIntegrate command does the same thing: ;[s] 3:0,0;3,1;15,2;44,-1; 3:1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; preserveAspect; endGroup; endGroup; ] NIntegrate[ Sqrt[1-x^4], {x,0,1} ] :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Exercises :[font = text; inactive; preserveAspect; ] Use the Integrate command to evaluate the integrals given in the following exercises from our textbook: ;[s] 3:0,0;7,1;18,2;104,-1; 3:1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = text; inactive; preserveAspect; ] 1. Exercise 43 on page 379 of Stein. :[font = text; inactive; preserveAspect; ] 2. Exercise 65 on page 379 of Stein. :[font = text; inactive; preserveAspect; ] 3. Exercise 77 on page 379 of Stein. :[font = text; inactive; preserveAspect; ] 4. Exercise 111 on page 379 of Stein. :[font = text; inactive; preserveAspect; ] 5. Exercise 153 on page 380 of Stein. :[font = text; inactive; preserveAspect; ] 6. Exercise 3 on page 429 of Stein. :[font = text; inactive; preserveAspect; ] 7. Exercise 5 on page 429 of Stein. :[font = text; inactive; preserveAspect; endGroup; endGroup; ] 8. Exercise 68 on page 431 of Stein. :[font = section; inactive; Cclosed; pageBreak; preserveAspect; startGroup; ] Iterated Integrals :[font = text; inactive; preserveAspect; ] An iterated integral is a multi-dimensional integral that is evaluated by applying the Fundamental Theorem of Calculus (finding antiderivatives) repeatedly. :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Example :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Let S be the solid bounded by: 0 < x < 1, 0 < y < 2-x, x+y < z < 4. Then the volume of the solid is given by the iterated iutegral: ;[s] 15:0,0;4,1;5,2;35,3;37,4;46,5;47,6;52,7;53,8;55,9;56,10;57,11;58,12;61,13;62,14;133,-1; 15:1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; preserveAspect; endGroup; ] vol = Integrate[ Integrate[ Integrate[ 1, {z,x+y,4} ], {y,0,2-x} ], {x,0,1} ] :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Suppose the temperature at the point (x,y,z) in the solid is given by the function: ;[s] 7:0,0;38,1;39,2;40,3;41,4;42,5;43,6;84,-1; 7:1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; preserveAspect; endGroup; ] temp[x_,y_,z_] := 1 + x^2 + y^2 + z^2 - 3x*y*z :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Then the average temperature throughout the solid is: :[font = input; preserveAspect; endGroup; endGroup; ] ave = (1/vol) Integrate[ Integrate[ Integrate[ temp[x,y,z], {z,x+y,4} ], {y,0,2-x} ], {x,0,1} ] :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Exercises :[font = text; inactive; preserveAspect; ] Use the iterated Integrate command to work the following exercises in our textbook: ;[s] 3:0,0;16,1;27,2;84,-1; 3:1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = text; inactive; preserveAspect; ] 1. Exercise 3 on page 705 of Stein. :[font = text; inactive; preserveAspect; ] 2. Exercise 23 on page 706 of Stein. :[font = text; inactive; preserveAspect; ] 3. Exercise 17 on page 720 of Stein. :[font = text; inactive; preserveAspect; endGroup; endGroup; ] 4. Exercise 35 on page 722 of Stein. :[font = section; inactive; Cclosed; preserveAspect; startGroup; ] Graphs in Spherical Coordinates :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Mathematica provides a very useful command for graphing surfaces in spherical coordinates. It is in the external packaged named ParametricPlot3D located in the Graphics directory of the /NextLibrary/Mathematica/Packages directory. To load this package into memory, simply execute the command: ;[s] 8:0,0;11,1;128,2;146,3;160,4;170,5;186,6;221,7;295,-1; 8:1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; preserveAspect; ] <<Graphics`ParametricPlot3D` :[font = text; inactive; preserveAspect; endGroup; ] Do NOT execute this command more than once. :[font = subsection; inactive; Cclosed; pageBreak; preserveAspect; startGroup; ] Examples :[font = text; inactive; preserveAspect; ] Once the Graphics/ParametricPlot3D package has been loaded, Mathematica will be able to execute the SphericalPlot3D command. This works like all other Plot commands: list the function whose graph is to be plotted, and then list the ranges on its independent variables. In the spherical coordinates (r,f,q), f (phi) and q (theta) are usually taken to be the independent variables, and r (rho) is the dependent variable. So the first thing listed is the value of the function r = f (f,q). ;[s] 27:0,0;8,1;35,2;60,3;71,4;99,5;116,6;151,7;157,8;301,9;302,10;303,11;304,12;305,13;306,14;309,15;310,16;321,17;322,18;386,19;387,20;478,21;479,22;485,23;486,24;487,25;488,26;491,-1; 27:1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Our first example is the unit sphere. It is the set of all points for which r = 1, so the function to be graphed is the constant function 1: ;[s] 3:0,0;77,1;78,2;141,-1; 3:1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; preserveAspect; ] SphericalPlot3D[ 1, {s,0,Pi}, {t,0,2Pi}]; :[font = text; inactive; preserveAspect; endGroup; ] Here we have used the full range on the independent variables: 0 to p for f, and 0 to 2 p for q. (Note that, since Mathematica does not recognize Greek letters, we use s for f and t for q.) ;[s] 19:0,0;68,1;69,2;74,3;75,4;88,5;89,6;94,7;95,8;116,9;127,10;168,11;171,12;175,13;176,14;180,15;183,16;187,17;188,18;190,-1; 19:1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Our second example is the upper "sheet" of the hyperboloid of two sheets, whose equation in rectangular coordinates is z^2 - x^2 - y^2 = 1, which simplifies to the polar (cylindrical) form: z^2 - r^2 = 1. Direct substitution of the polar transformation equations produces: r^2 cos^2 f - r^2 sin^2 f = 1, which reduces to: r^2 cos 2f= 1, or: r^2 = sec 2f. Then, solving for r results in the function: Sqrt[sec 2f]: ;[s] 31:0,0;120,1;121,2;126,3;127,4;132,5;133,6;193,7;194,8;199,9;200,10;278,11;279,12;288,13;289,14;292,15;293,16;302,17;303,18;328,19;329,20;337,21;338,22;349,23;350,24;360,25;361,26;382,27;383,28;420,29;421,30;423,-1; 31:1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; preserveAspect; ] SphericalPlot3D[ Sqrt[Sec[2s]], {s,0,Pi/6}, {t,0,2Pi} ]; :[font = text; inactive; preserveAspect; endGroup; ] This isn't a very good perspective. :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] To improve the image, we'll use the ViewPoint option. We'll specify (in rectangular coordinates) the point (5,3,2) from which the view should be made: ;[s] 3:0,0;35,1;46,2;152,-1; 3:1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = input; preserveAspect; ] SphericalPlot3D[ Sqrt[Sec[2s]], {s,0,0.7}, {t,0,2Pi}, ViewPoint -> {5,3,2}]; :[font = text; inactive; preserveAspect; endGroup; endGroup; ] Notice that we extended the range on phi from p/6 to 0.7. ;[s] 3:0,0;46,1;47,2;58,-1; 3:1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Exercise :[font = text; inactive; preserveAspect; endGroup; endGroup; ] Use the SphericalPlot3D command to graph the circular hyperboloid of one sheet (the nuclear power plant cooling tower) whose equation in rectangular coordinates is x^2 + y^2 - z^2 = 1. Restrict phi to the interval p/3 to 2p/3. ;[s] 13:0,0;7,1;24,2;164,3;165,4;170,5;171,6;176,7;177,8;215,9;216,10;223,11;224,12;227,-1; 13:1,11,8,Times,0,12,0,0,0;1,10,8,Courier,1,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = section; inactive; Cclosed; pageBreak; preserveAspect; startGroup; ] Integrals in Spherical Coordinates :[font = text; inactive; preserveAspect; ] Integration in spherical coordinates requires the Jacobian r^2 sin f. After multiplying the integrand (the function to be integrated) by this factor, integration in Mathematica proceeds normally. ;[s] 7:0,0;60,1;61,2;68,3;69,4;167,5;178,6;198,-1; 7:1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Example :[font = text; inactive; Cclosed; preserveAspect; startGroup; ] Find the center of mass of that part of a sphere that lies above the cone whose half-vertex angle is p/4, assuming that the density of the object is proportional to the distance from the xy-plane. ;[s] 5:0,0;101,1;102,2;187,3;190,4;191,-1; 5:1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,10,8,Times,2,12,0,0,0; :[font = input; preserveAspect; ] m = Integrate [ r^3 Sin[s] Cos[s], {r,0,1}, {s,0,Pi/4}, {t,0,2Pi} ] :[font = input; preserveAspect; ] zm = Integrate [ r^4 Sin[s] Cos[s]^2, {r,0,1}, {s,0,Pi/4}, {t,0,2Pi} ] :[font = input; preserveAspect; ] zm/m // Simplify :[font = input; preserveAspect; ] N[%] :[font = text; inactive; preserveAspect; endGroup; endGroup; ] The center of mass is about 69% to the top. :[font = subsection; inactive; Cclosed; preserveAspect; startGroup; ] Exercises :[font = text; inactive; preserveAspect; ] 1. Find the center of mass of that part of a sphere of uniform density that lies above the cone whose half-vertex angle is p/3. (Take the sphere's radius to be 1.) ;[s] 3:0,0;129,1;130,2;171,-1; 3:1,11,8,Times,0,12,0,0,0;1,0,0,Symbol,0,12,0,0,0;1,11,8,Times,0,12,0,0,0; :[font = text; inactive; preserveAspect; ] 2. Find the center of mass of the same object as in Exercise 1, but assume that the object's density is proportional to the square of the distance from the xy-plane. ;[s] 2:0,0;162,1;172,-1; 2:1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0; :[font = text; inactive; preserveAspect; endGroup; endGroup; endGroup; ] 3. Repeat problem 2 but with the spherical cap of the solid removed. (Hint: Change the upper bound on r to sec s / 2.) ;[s] 6:0,0;108,1;109,2;117,3;118,4;121,5;122,-1; 6:1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,10,8,Times,2,12,0,0,0;1,11,8,Times,0,12,0,0,0;1,11,8,Times,0,12,0,0,0; ^*)